3.43 \(\int \frac{1}{x^3 (a+b \sec ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=84 \[ \frac{c^2 \cos \left (\frac{2 a}{b}\right ) \text{CosIntegral}\left (\frac{2 a}{b}+2 \sec ^{-1}(c x)\right )}{b^2}+\frac{c^2 \sin \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sec ^{-1}(c x)\right )}{b^2}-\frac{c^2 \sin \left (2 \sec ^{-1}(c x)\right )}{2 b \left (a+b \sec ^{-1}(c x)\right )} \]

[Out]

(c^2*Cos[(2*a)/b]*CosIntegral[(2*a)/b + 2*ArcSec[c*x]])/b^2 - (c^2*Sin[2*ArcSec[c*x]])/(2*b*(a + b*ArcSec[c*x]
)) + (c^2*Sin[(2*a)/b]*SinIntegral[(2*a)/b + 2*ArcSec[c*x]])/b^2

________________________________________________________________________________________

Rubi [A]  time = 0.149351, antiderivative size = 84, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {5222, 4406, 12, 3297, 3303, 3299, 3302} \[ \frac{c^2 \cos \left (\frac{2 a}{b}\right ) \text{CosIntegral}\left (\frac{2 a}{b}+2 \sec ^{-1}(c x)\right )}{b^2}+\frac{c^2 \sin \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sec ^{-1}(c x)\right )}{b^2}-\frac{c^2 \sin \left (2 \sec ^{-1}(c x)\right )}{2 b \left (a+b \sec ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(a + b*ArcSec[c*x])^2),x]

[Out]

(c^2*Cos[(2*a)/b]*CosIntegral[(2*a)/b + 2*ArcSec[c*x]])/b^2 - (c^2*Sin[2*ArcSec[c*x]])/(2*b*(a + b*ArcSec[c*x]
)) + (c^2*Sin[(2*a)/b]*SinIntegral[(2*a)/b + 2*ArcSec[c*x]])/b^2

Rule 5222

Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*S
ec[x]^(m + 1)*Tan[x], x], x, ArcSec[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] && (GtQ[n,
0] || LtQ[m, -1])

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3297

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[((c + d*x)^(m + 1)*Sin[e + f*x])/(d*(
m + 1)), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rubi steps

\begin{align*} \int \frac{1}{x^3 \left (a+b \sec ^{-1}(c x)\right )^2} \, dx &=c^2 \operatorname{Subst}\left (\int \frac{\cos (x) \sin (x)}{(a+b x)^2} \, dx,x,\sec ^{-1}(c x)\right )\\ &=c^2 \operatorname{Subst}\left (\int \frac{\sin (2 x)}{2 (a+b x)^2} \, dx,x,\sec ^{-1}(c x)\right )\\ &=\frac{1}{2} c^2 \operatorname{Subst}\left (\int \frac{\sin (2 x)}{(a+b x)^2} \, dx,x,\sec ^{-1}(c x)\right )\\ &=-\frac{c^2 \sin \left (2 \sec ^{-1}(c x)\right )}{2 b \left (a+b \sec ^{-1}(c x)\right )}+\frac{c^2 \operatorname{Subst}\left (\int \frac{\cos (2 x)}{a+b x} \, dx,x,\sec ^{-1}(c x)\right )}{b}\\ &=-\frac{c^2 \sin \left (2 \sec ^{-1}(c x)\right )}{2 b \left (a+b \sec ^{-1}(c x)\right )}+\frac{\left (c^2 \cos \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sec ^{-1}(c x)\right )}{b}+\frac{\left (c^2 \sin \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sec ^{-1}(c x)\right )}{b}\\ &=\frac{c^2 \cos \left (\frac{2 a}{b}\right ) \text{Ci}\left (\frac{2 a}{b}+2 \sec ^{-1}(c x)\right )}{b^2}-\frac{c^2 \sin \left (2 \sec ^{-1}(c x)\right )}{2 b \left (a+b \sec ^{-1}(c x)\right )}+\frac{c^2 \sin \left (\frac{2 a}{b}\right ) \text{Si}\left (\frac{2 a}{b}+2 \sec ^{-1}(c x)\right )}{b^2}\\ \end{align*}

Mathematica [A]  time = 0.350875, size = 80, normalized size = 0.95 \[ \frac{c \left (-\frac{b \sqrt{1-\frac{1}{c^2 x^2}}}{a x+b x \sec ^{-1}(c x)}+c \cos \left (\frac{2 a}{b}\right ) \text{CosIntegral}\left (2 \left (\frac{a}{b}+\sec ^{-1}(c x)\right )\right )+c \sin \left (\frac{2 a}{b}\right ) \text{Si}\left (2 \left (\frac{a}{b}+\sec ^{-1}(c x)\right )\right )\right )}{b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(a + b*ArcSec[c*x])^2),x]

[Out]

(c*(-((b*Sqrt[1 - 1/(c^2*x^2)])/(a*x + b*x*ArcSec[c*x])) + c*Cos[(2*a)/b]*CosIntegral[2*(a/b + ArcSec[c*x])] +
 c*Sin[(2*a)/b]*SinIntegral[2*(a/b + ArcSec[c*x])]))/b^2

________________________________________________________________________________________

Maple [A]  time = 0.243, size = 77, normalized size = 0.9 \begin{align*}{c}^{2} \left ( -{\frac{\sin \left ( 2\,{\rm arcsec} \left (cx\right ) \right ) }{ \left ( 2\,a+2\,b{\rm arcsec} \left (cx\right ) \right ) b}}+{\frac{1}{{b}^{2}} \left ({\it Si} \left ( 2\,{\frac{a}{b}}+2\,{\rm arcsec} \left (cx\right ) \right ) \sin \left ( 2\,{\frac{a}{b}} \right ) +{\it Ci} \left ( 2\,{\frac{a}{b}}+2\,{\rm arcsec} \left (cx\right ) \right ) \cos \left ( 2\,{\frac{a}{b}} \right ) \right ) } \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(a+b*arcsec(c*x))^2,x)

[Out]

c^2*(-1/2*sin(2*arcsec(c*x))/(a+b*arcsec(c*x))/b+(Si(2*a/b+2*arcsec(c*x))*sin(2*a/b)+Ci(2*a/b+2*arcsec(c*x))*c
os(2*a/b))/b^2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*arcsec(c*x))^2,x, algorithm="maxima")

[Out]

-(4*sqrt(c*x + 1)*sqrt(c*x - 1)*(b*arctan(sqrt(c*x + 1)*sqrt(c*x - 1)) + a) + (4*b^3*x^2*arctan(sqrt(c*x + 1)*
sqrt(c*x - 1))^2 + b^3*x^2*log(c^2*x^2)^2 + 8*b^3*x^2*log(c)*log(x) + 4*b^3*x^2*log(x)^2 + 8*a*b^2*x^2*arctan(
sqrt(c*x + 1)*sqrt(c*x - 1)) + 4*(b^3*log(c)^2 + a^2*b)*x^2 - 4*(b^3*x^2*log(c) + b^3*x^2*log(x))*log(c^2*x^2)
)*integrate(4*(a*c^2*x^2 + (b*c^2*x^2 - 2*b)*arctan(sqrt(c*x + 1)*sqrt(c*x - 1)) - 2*a)*sqrt(c*x + 1)*sqrt(c*x
 - 1)/(4*(b^3*c^2*log(c)^2 + a^2*b*c^2)*x^5 - 4*(b^3*log(c)^2 + a^2*b)*x^3 + 4*(b^3*c^2*x^5 - b^3*x^3)*arctan(
sqrt(c*x + 1)*sqrt(c*x - 1))^2 + (b^3*c^2*x^5 - b^3*x^3)*log(c^2*x^2)^2 + 4*(b^3*c^2*x^5 - b^3*x^3)*log(x)^2 +
 8*(a*b^2*c^2*x^5 - a*b^2*x^3)*arctan(sqrt(c*x + 1)*sqrt(c*x - 1)) - 4*(b^3*c^2*x^5*log(c) - b^3*x^3*log(c) +
(b^3*c^2*x^5 - b^3*x^3)*log(x))*log(c^2*x^2) + 8*(b^3*c^2*x^5*log(c) - b^3*x^3*log(c))*log(x)), x))/(4*b^3*x^2
*arctan(sqrt(c*x + 1)*sqrt(c*x - 1))^2 + b^3*x^2*log(c^2*x^2)^2 + 8*b^3*x^2*log(c)*log(x) + 4*b^3*x^2*log(x)^2
 + 8*a*b^2*x^2*arctan(sqrt(c*x + 1)*sqrt(c*x - 1)) + 4*(b^3*log(c)^2 + a^2*b)*x^2 - 4*(b^3*x^2*log(c) + b^3*x^
2*log(x))*log(c^2*x^2))

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{b^{2} x^{3} \operatorname{arcsec}\left (c x\right )^{2} + 2 \, a b x^{3} \operatorname{arcsec}\left (c x\right ) + a^{2} x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*arcsec(c*x))^2,x, algorithm="fricas")

[Out]

integral(1/(b^2*x^3*arcsec(c*x)^2 + 2*a*b*x^3*arcsec(c*x) + a^2*x^3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{3} \left (a + b \operatorname{asec}{\left (c x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(a+b*asec(c*x))**2,x)

[Out]

Integral(1/(x**3*(a + b*asec(c*x))**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \operatorname{arcsec}\left (c x\right ) + a\right )}^{2} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(a+b*arcsec(c*x))^2,x, algorithm="giac")

[Out]

integrate(1/((b*arcsec(c*x) + a)^2*x^3), x)